Ah, but I play dice. It's quite fun.   

Naganori Yamaguchi

日本語: URL

Affiliation: Institute of Science Tokyo (JSPS PD)

Research funds: JSPS KAKENHI Project/Area Number 23KJ0881

Expertise: Arithmetic Geometry, Anabelian Geometry

Research Topic: My area is Anabelian geometry. Recently, I have been interested in the theory of the m-step solvable reconstruction of Anabelian geometry.

Contact

Email: yamaguchi.n.ac(at)m.titech.ac.jp

            naganori(at)kurims.kyoto-u.ac.jp

Institution Contact: (03)3726-1111

ORCID: 0000-0002-0347-2746

Researchmap ID: R000054174

ArXiv ID: URL

Published Papers

  1. Naganori Yamaguchi, The geometrically $m$-step solvable Grothendieck conjecture for affine hyperbolic curves over finitely generated fields
    • Journal: Journal of the London Mathematical Society, Volume 109, issue 5, May 2024, e12912. (DOI)
    • ArXiv: 2302.09253 (URL)
    • Notes: It's my Doc. thesis. A Summary is here [URL].
  2. Naganori Yamaguchi, The geometrically $m$-step solvable Grothendieck conjecture for genus $0$ curves over finitely generated fields
    • Journal: Journal of Algebra, Volume 629, September 2023, Pages 191-226. (DOI)
    • ArXiv: 2010.00290 (URL)
  3. Naganori Yamaguchi, A survey of known results on the $m$-step solvable anabelian geometry for hyperbolic curves
    • Journal: RIMS Kokyuroku Bessatsu (Forthcoming)
    • ArXiv: 2204.08008 (URL)

Preprints

  1. Benjamin Collas, Takahiro Murotani, and Naganori Yamaguchi, Symmetries of spaces and numbers -- anabelian geometry
    • ArXiv: 2508.01588 (URL)
  2. Naganori Yamaguchi, A refined version of the geometrically $m$-step solvable Grothendieck conjecture for genus $0$ curves over finitely generated fields
    • ArXiv: 2407.09906 (URL)

Notes

  1. E. Caeiro, A. Klughertz, S. Philip, and N. Yamaguchi, Notes from “Atelier de Géométrie Arithmétique” – Spaces and perfectoids, edited by S. Philip (PDF)
    • Atelier de Géométrie Arithmétique – Summer 2024 (URL)
  2. 山口永悟, 遠アーベル幾何学における$m$階可解グロタンディーク予想について (PDF)
    • The 19th Mathematics Conference for Young Researchers(URL) Technical Report

Talks

  1. 2025/03/31: Spring seminar on Arithmetic Galois theory in Toyonaka 2025 (URL), Osaka University, TBA
  2. 2024/11/23: 北大数論セミナー (URL), Hokkaido University, The Finite-Step Solvability of Anabelian Geometry
  3. 2024/10/25: 九州代数学セミナー (URL), Kyushu University, Anabelian geometry and $m$-step solvable reconstruction
  4. 2024/03/12: Anabelian Geometry in Tokyo 2024 (URL), Tokyo Institute of Technology, The $m$-step solvable reconstruction for the Grothendieck conjecture in Anabelian Geometry
  5. 2024/02/15: Mathsci Freshman Seminar 2024 (URL), Nagoya University, Recent developments for $m$-step solvable Anabelian Geometry
  6. 2023/07/14: 22th Hiroshima-Sendai Workshop on Number Theory (URL), Hiroshima University, New developments in anabelian geometry by using $m$-step reconstruction
  7. 2023/04/17: Arithmetic & Homotopic Galois Theory seminar of the International Research Network (URL), RIMS Kyoto University (Invited Talk), Anabelian geometry and $m$-step reconstruction
  8. 2023/03/28: Low Dimensional Topology and Number Theory XIV (URL), Kyushu University (Invited Talk), On the development of anabelian geometry using the maximal geometrically $m$-step solvable quotient of arithmetic fundamental groups
  9. 2023/03/08: The 19th Mathematics Conference for Young Researchers (URL), Hokkaido University (Technical Report: URL), 遠アーベル幾何学におけるm 次可解グロタンディーク予想について
  10. 2021/12/07: The Japan Europe Number Theory Exchange Seminar (URL), Online (Invited Talk), The $m$-step solvable anabelian geometry for hyperbolic curves over finitely generated fields
  11. 2020/12/02: Algebraic Number Theory and Related Topics 2020 (URL), RIMS Kyoto University, 種数0の曲線における導来商版Grothendieck予想について
  12. 2020/09/09: 19th Sendai-Hiroshima Number Theory Conference (URL), Tohoku University, The $m$-step solvable Grothendieck conjecture for genus $0$ curves over finitely generated fields
  13. 2020/08/19: 2nd Kyoto-Hefei Workshop on Arithmetic Geometry 2020 (URL), Online (Invited Talk), The $m$-step solvable Grothendieck conjecture for genus $0$ curves over finitely generated fields
  14. 2020/08/11: Kyushu Algebraic Number Theory 2020 (URL), Kyushu University, The $m$-step solvable Grothendieck conjecture for genus $0$ curves over finitely generated fields

Career

  • 2024/09/01 - 2025/03/31: Tokyo Denki University Part-time Teacher "Calculus II (1EJ・EH・ES)"
  • 2023/09/01 - 2024/03/31: Tokyo Denki University Part-time Teacher "Calculus II (1EJ・EH・ES)"
  • 2023/04/01 - 2026/03/31: Japan Society for the Promotion of Science Research Fellow PD
  • 2021/04/01 - 2023/03/31: Japan Society for the Promotion of Science Research Fellow DC2
  • 2020/10/01 - 2022/03/31: Special Teaching Assistant, Kyoto University Super Global Course Mathematics
  • 2020/04/01 - 2021/03/31: Research Assistant, Kyoto University Research Institute for Mathematical Sciences

Education

  • 2020/04/01 - 2023/03/23: Kyoto University, Graduate School of Science, Division of Mathematics and Mathematical SciencesDepartment of Mathematics, Doctoral Program (Completed) [Doctoral thesis]
  • 2018/04/01 - 2020/03/23: Kyoto University, Graduate School of Science, Division of Mathematics and Mathematical SciencesDepartment of Mathematics, Master's Program (Completed)
  • 2014/04/01 - 2018/03/26: Tokyo Institute of Technology, Department of Mathematics, Bachelor's Program (Graduated)

Research funds

  • 2023/04/25 – 2026/03/31: JSPS KAKENHI Project/Area Number 23KJ0881 (URL)
  • 2021/04/25 – 2023/03/31: JSPS KAKENHI Project/Area Number 21J11884 (URL)

Organize

  • Atelier de Géométrie Arithmétique - 数論幾何学のアトリエ:
    • 2025/09/26: Summer 2025 "Étale homotopy theory and application", (URL), RIMS kyoto University and Paris
    • 2024/07/19: Summer 2024 "Spaces and perfectoids towards a perfectoid Siegel modular space" (URL), RIMS kyoto University and Paris
    • 2024/02/24: Winter 2024 "Around the Grothendieck-Teichmüller group" (URL), RIMS kyoto University and Paris
    • 2023/06/27: Summer 2023 "Local-global principles and the patching method" (URL), RIMS kyoto University and Paris
  • Anabelian GEometry Workshop:
    • 2025/09/2-3: Anabelian Geometry in Yokohama 2025 (URL), Kanagawa University
    • 2024/03/11-12: Anabelian Geometry in Tokyo 2024 (URL), Tokyo Institute of Technology
  • Ookayama Youth Seminar in Algebra (ongoing), Institute of Science Tokyo

Memberships

  • The Mathematical Society of Japan (URL)
  • Research Fellow, Tokyo Institute of Technology (URL)
  • Reviewer for MathSciNet (URL)
  • “Arithmetic and Homotopic Galois Theory” RIMS-LPP-ENS International Research Network (URL)

Nice URLs

  • Shun Ishii's Homepage (URL)
  • Séverin Philip's Homepage (URL)
  • Ryo Ishizuka 's Homepage (URL)
  • My bookshelf (URL)